Liquid ring vacuum pumps two stage

LPH 10534

Pressure range: suction volume flow:

33 to 1013 mbar 3300 to 7400 m³/h

CONSTRUCTION TYPE

Sterling SIHI liquid ring vacuum pumps are displacement pumps of uncomplicated and robust construction with the following particular features:

handling of nearly all gases and vapours

non polluting due to a nearly isothermal compression

oil-free, as no lubrication in the working chamber

small quantities of entrained liquid can be handled

easy maintenance and reliable operation

low noise and nearly free from vibration

wide choice of material, therefore applicable nearly anywhere

protection against cavitation as standard incorporated dirt drain

no metallic contact of the rotating parts

The Sterling SIHI liquid ring vacuum pump LPH 10534 is a two stage pump.

APPLICATION

Handling and exhausting of dry and humid gases; entrained liquid can be handled during normal duty. The pumps are applied in all fields where a pressure of 33...900 mbar must be created by robust vacuum pumps.

Fields of application are for example:

chemistry and pharmacy for distilling and degassing, electric industry for impregnation and drying plastics industry for degassing etc..

NOTE

During operation the pump must continuously be supplied with service liquid, normally water, in order to eliminate the heat resulting from the gas compression and to replenish the liquid ring, because part of the liquid is leaving the pump together with the gas. This liquid can be separated from the gas in a liquid separator (see catalogue part accessories).

It is possible to reuse the service liquid. The pumps are with a device by which the contaminated service liquid can be drained during operating (dirt drain), if necessary.

The direction of the rotation is clockwise, when looking from the drive on the pump.

GENERAL TECHNICHAL DATA

Pump type		unit	LPH 10534				
Speed ¹⁾ normal speed		rpm	400	490 ¹⁾	590		
Max. compression over pressure		bar		1,5			
Max. admissible difference		bar		1,2			
Hydraulic test (over pressure)		bar		3			
Moment of inertial of the rotating pump parallel and of the water filling	arts	kg ∙ m²		88			
Sound pressure level at a suction of 80 mbar		dB (A)	88	89	90		
Min. Pulley diameter permissible in case of V-belt drive		mm		1000			
max. gas temperature	dry saturated	°C ℃		160 80			
Service liquid max. admissible temperature max. viscosity max. density volume up to shaft level		°C mm²/s kg/m³ liter		60 90 1200 400			
Max. flow resistance of the heat exchanger		bar		0,2			

The combination of several limiting values is not admissible.

Material Design

Item	COMPONENTS	MATERIAL DESIGN
		02
0001, 0002	Casing	0.6025
0010, 0011, 0012, 0013	Guide disk	0.6025
0030, 0031	Vane wheel impeller	1.0570
0035, 0036	Central body	1.0038
0200	Shaft	1.0503
0270, 0271	Shaft sleeve	1.4027.05
0400	Gland packing	GORE

Sectional drawing LPH 10534

The operation data are applicable under the following conditions:

•	pumping medium:	- dry air: - water vapour saturated air:	20°C 20°C	
•	service liquid:	- water:	15°C	
Co	ompression pressure	1013 mbar (atmospheric pressure)		

The suction volume flow is applied to the suction pressure Tolerance of the operating data 10% Max. freshwater need with lowest suction pressure

- N 1 = gas inlet DN 200
- N 2 = gas outlet DN 200
- u_B = connection for service liquid G 3
- u_c = connection for protection against cavitation G _{3/4}
- ue = drained connection G 3/4
- u_1 = connection for vent cock G 1 $\frac{1}{2}$
- u_m = connection for pressure gauge G¹/₂
- u_{m1} = connection for drain value G $\frac{3}{4}$
- use = connection for dirt drain G 3/4

	weight for mater 02	abt. kg ial design 42
LPH 10534 BN	3850	4150

flange connections to DIN 2501 PN 10							
DN 200							
k	295						
D	340						
number x d ₂	8 x 23						

Fresh water requirements in [m³/h] dependent on suction pressure, speed, mode of operation and difference in temperature

suction pressu	ıre [mbar]			33	33 120					_	200					400					
			KB		KB					K	В				K	В					
pump type	speed	te	differe mpera	ence ir iture [°	n °C]	FB different temperation		ence ir iture [°	i 'C]	FB		differe mpera	ence in iture [°	'C]	FB	tei	differe mpera	nce in ture [°	C]	FB	
	[rpm]	20	10	5	2		20	10	5	2		20	10	5	2		20	10	5	2	
	400		6,3	10,4	17,1		4,0	7,0	11,1	17,2		4,3	7,3	11,2	16,5		4,1	6,6	9,3	12,4	
LPH 10534	490		8,5	13,3	20,0	30	5,4	9,0	13,5	19,3	27	5,7	9,2	13,3	18,1	24	5,2	7,8	10,5	13,2	16
	590		11,4	16,6	22,6]	7,2	11,4	16,0	21,2]	7,3	11,2	15,3	19,5]	6,3	9,1	11,6	13,9	

FB = fresh liquid service

KB = combined liquid service with service water 20°C, 10 °C, 5 °C, 2 °C warmer than the fresh water

Data regarding the pump size - order hints

series + size	bearings + direction of rotation	shaft sealing	material design	casing sealing		
	 B• two grease lubricated antifriction bearing •N one shaft end clockwise rotating 	041 double gland packing	02 main parts GG without non-ferrous metal	0 liquid seal		
LPH 10534	BN	041	02	0		

Upon request (dependent on the operating conditions) this vacuum pump is available as complete unit (e.g. pump, couplings, contact safety device and gear mounted on a base frame).

Design - Motor selection table

	designation	electric motor 50 Hz				
pump with free shaft end	01	motor protection IP 55				
pump with coupling, pre-drilled at motor side	04	size				
as above, but with gearing, motor and base frame	order with text in clear	160 200 250 315	315L 315L 315 315 315			

Motor: If motors with the other voltage, type of protection and frequency are required a special information should be given.

Accessories

Recommended accessorie	es		LPH 10534										
Upright liquid separator		type weight	XBp 15112 260 kg										
material design	130 / galvanized 172 / 1.4571	SIHI part No.	35000601 35000602										
service liquid line													
material design	072 / St 37-0 172 / 1.4571	SIHI part No.	20027255 on reguest										
discharge line (bend)													
material design	072 / St 37-0 172 / 1.4571	SIHI part No.	20027265 35003239							20027265 35003239			
Motor in case of standard IP 55	design	size power weight abt.	315L 160 kW 1060 kg	315L 200 kW 1200 kg	315 250 kW 1300 kg	315 300 kW 1500 kg							

Any changes in the interest of technical development are reserved.

Sterling SIHI GmbH Lindenstraße 170, D-25524 Itzehoe, Germany, Telephone +49 (0)48 21 / 7 71 - 01, Fax +49 (0)48 21 / 7 71-274